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Abstract. This document is a summary of the work done by the author and supervisor in the Spring

2018 term for the Combinatorics and Optimization department’s Undergraduate Research Assistantship

Program at the University of Waterloo. In this project, we explored a problem in network design, on

survivable networks with small requirements.

Given a complete graph G = (V,E) with edge costs ce, and requirements ruv ∈ Z for u, v ∈ V , we

desire a set of edges F ⊆ E of minimum cost such that each pair of vertices (u, v) is connected by ruv

vertex-disjoint paths. This is the Vertex-Connectivity Survivable Network Design Problem (VC-SNDP). In

this project, we focused on the case where the requirements are less than or equal to 3, where no constant

factor approximation is known. We document here many approaches that we took to try to gain traction

on the problem, and several new lemmas that may prove useful in future work.

1. Introduction

Network design is an interesting area with many applications, mainly in the area of the design of telecom-

munications networks. In particular, survivable network problems model the idea of ”failure points”, that

is, how many junctions in a network can fail before the network is no longer connected?

The Vertex-Connectivity Survivable Network Design Problem (VC-SNDP) is a very general problem in

survivable network design. The problem is formulated as follows: given a complete graph G = (V,E) with

edge costs ce for e ∈ E, and requirements ruv ∈ Z for u, v ∈ V , we desire a set of edges F ⊆ E of minimum

cost such that each pair of vertices (u, v) is connected by ruv vertex-disjoint paths.

This problem generalizes the Steiner Tree Problem, which was show by [Karp, 1972] to be NP -complete.

Thus, unless P = NP , we cannot find a polynomial-time algorithm that finds the optimal solution to

VC-SNDP. Instead, we try to find algorithms that run in polynomial time and provide an approximation

guarantee; that is, the edge-set F output by the algorithm is guaranteed to have cost at most f times the

optimal solution, where f is some function of the problem instance.

Approximation algorithms with approximation factor 2 exist for the analogous problem of edge-connectivity

([Jain, 2001]), requiring only edge-disjoint paths, as well as for element-connectivity ([Fleischer et al., 2006]),

a concept that is intermediate between edge- and vertex-connectivity. However, when vertex-disjoint paths

are required, the problem appears to be more difficult. Let k = maxu,v∈V ruv and let T be the set of vertices

which are an end of a pair with nonzero requirement, called terminals. The best known approximation for

VC-SNDP is O(k3 ln |T |) due to an algorithm from [Chuzhoy and Khanna, 2009].

Certain special cases on the requirements admit algorithms with better approximations. In the case of

requirements ruv ∈ {0, 1, 2}, a 2-approximation algorithm is given in [Fleischer et al., 2006]. If the all pairs

with positive requirements share one vertex (we call these rooted requirements), then an O(k2)-approximation

algorithm is given in [Nutov, 2012a]. If ruv = k for all u, v ∈ T , then an O(k ln k)-approximation algorithm

is given in [Nutov, 2012b].
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These results motivate the major open problems related to VC-SNDP; in the general case, does there exist

an algorithm with approximation factor independent of |T |? If not, then in the case of ruv ∈ {0, 1, 2, 3}, is

there an algorithm with a constant factor approximation?

In this project, we start to build some foundation and present some ideas that may prove useful in

addressing the latter question. In Sections 2 and 3, we summarize the ideas of [Nutov, 2009]. In Section 4,

we prove a new lemma for the general case that is similar to some structural results from [Nutov, 2009]. In

Section 5 we provide a counterexample showing that this lemma only holds in instances of small requirements.

In Section 6, we present a new framework that attempts to use the new lemma along with the ideas and results

from [Nutov, 2009] to attempt to generalize those results from the rooted case to the general case. Section 7

contains a proof of a separate structural lemma that, while not explicitly used anywhere, may prove important

in the future. Section 8 is a brief look into an alternate approach, where we explore what a generalization of

the 2-approximation algorithm for the Steiner Forest Problem ([Williamson and Shmoys, 2011], page 170)

would require.

2. Summary of [Nutov, 2009]

Let G = (V,E) be a complete graph with edge costs ce and connectivity requirements {ruv : u, v ∈ V }.
Let κH(u, v) denote the maximum number of internally-vertex-disjoint paths from u to v in the graph H.

Let J = (V,EJ) be a subgraph of G. Define ΓJ(X) = Γ(X) = {v ∈ V −X : uv ∈ EJ for some u ∈ X},
the set of neighbours of X in J , and let X∗ = V − (X ∪ Γ(X)).

Assume that there is a set of terminals T ⊆ V and a vertex s ∈ V such that rst = `+ 1 for all t ∈ T and

rst = 0 otherwise, so the instance of VC-SNDP is rooted at s. Assume that the subgraph J has cost 0 and

κJ(s, t) = ` for all t ∈ T . Thus we are considering an instance of the Rooted SND Augmentation problem,

where we wish to find an augmenting set of edges I of minimum cost such that the connectivity between s

and nodes in T is at least `+ 1 in G+ I.

We require the following definitions.

Definition 1 (t-tight, min-core, max-core). A node subset X ⊆ V is t-tight for t ∈ T if t ∈ X, s ∈ X∗,
and |ΓJ(X)| = l. A tight set is a core if it does not contain two inclusion minimal tight sets. An inclusion

minimal core is a min-core, and an inclusion maximal core is a max-core.

Definition 2 (Ci,Mi, CJ ,MJ , Ti,Γi). Let CJ = {C1, ..., Cν} be the set of min-cores of J with ν = |CJ |, and

MJ = {M1, ...,Mν} be a set of max-cores such that Mi contains Ci. Let Ti = T ∩ Ci and Γi = Γ(Mi).

Definition 3 (independence of max-cores). Mi,Mj ∈ MJ are independent if the sets Ti ∩M∗j , Tj ∩M∗i
are both nonempty. If Mi,Mj are not independent, then Ti ⊆ Γj or Tj ⊆ Γi and we say that Mi,Mj are

dependent.

The following two propositions concern basic properties of the sets CJ and MJ , and the proofs follow

directly from Lemma 2.2 in the paper. The first proposition states that min-cores do not T -intersect, so

terminals belong to only one min-core.

Proposition 1 (Lemma 2.3 from [Nutov, 2009]). For any tight set X and any Ci ∈ CJ , either Ci∩X∩T = ∅
or Ci ⊆ X. Thus Ci ∩ Cj ∩ T = ∅ for any i 6= j.

The statement of the lemma has been modified slightly, as the proof in the paper actually implies that

Ci ⊆ X and not just that Ci ∩ T ⊆ X.

Proposition 2 (Corollary 2.4 from [Nutov, 2009]). For any i the set Mi is unique. For any i 6= j, if Mi,Mj

are independent, then Mi ∩M∗j ,Mj ∩M∗i are tight.
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Given a subfamily M⊆MJ , denote by F(M) the set of tight subsets of max-cores in M. That is,

F(M) = {X : X ⊆M ∈M, X is tight}.

Then we have

Lemma 3 (Lemma 2.7 from [Nutov, 2009]). If I ⊆ E covers F(MJ) then the number of min-cores in G+ I

is at most ν/2.

This lemma informs our augmentation strategy. We can iteratively find O(log ν) = O(log |T |) covering

sets, decreasing the number of min-cores by a factor of at least 1/2 at each step until there are no min-cores

remaining. Thus we increase the connectivity of J .

The remainder of Section 2 of the paper consists of finding a cover for F(MJ). We do this by partitioning

MJ into parts Mi for which the members of each part are pairwise independent. Then the families F(Mi)

will have a special structure (bi-uncrossability) allowing us to find a low cost cover set I for each of them.

Lemma 4 (Lemma 2.6 from [Nutov, 2009]). The family MJ can be partitioned, in polynomial time, into at

most 2`+ 1 parts so that the members of each part are pairwise independent.

Definition 4 (bi-uncrossable). A subfamily F of tight sets is bi-uncrossable if for any X,Y ∈ F at least

one of the following holds: X ∩ Y,X ∪ Y ∈ F and equality holds in the first part of Proposition 2.2, or

X ∩ Y ∗, Y ∩X∗ ∈ F and equality holds in the second part of Proposition 2.2.

Lemma 5 (Lemma 2.5 from [Nutov, 2009]). If the members of M are pairwise independent, then the family

F(M) is bi-uncrossable.

Thus we can decompose the family F(MJ) into bi-uncrossable subfamilies. Our final lemma allows us to

find covers for each of these subfamilies.

Lemma 6 (Follows from section 3 of [Nutov, 2009]). There exists a 2-approximation algorithm for the

problem of finding a minimum cost edge-cover of a bi-uncrossable family F .

Then we can combine the 2` + 1 2-approximate edge-covers of Lemma 6 to get a 2(2` + 1)-approximate

edge cover of F(MJ). This gives an O(` log |T |)-approximation algorithm for the Rooted SND Augmen-

tation problem, and thus an O(k2 log |T |)-approximation algorithm for the Rooted SND problem, where

k = max(rij : i, j ∈ V ).

A final improvement to this method that is detailed in [Nutov, 2012a] involves bounding the number of

iterations that must be done for the augmentation. Once each core contains enough terminals, the whole

family F(MJ) becomes bi-uncrossable, and thus one final covering will cover all required tight sets. This

number of terminals required in each core is on the order of `, and so the best known approximation factor

for the rooted problem is no longer dependent on T , and becomes O(k2). See [Nutov, 2012a] for details.

3. Proof of Proposition 2.1 from [Nutov, 2009]

The proof of Proposition 2.1 from [Nutov, 2009] is omitted from that paper, and the reference provided

for it is somewhat unclear, as it is written in a different context. As such, we provide a proof here that will

hopefully clearly illustrate the details of the properties described. The definitions and notation used here

are the same as in the previous section.

Proposition 7 (Proposition 2.1 from [Nutov, 2009]). For any X,Y ⊆ V the following hold:

(i) |Γ(X)| + |Γ(Y )| ≥ |Γ(X ∩ Y )| + |Γ(X ∪ Y )|, and if equality holds, then (X ∩ Y )∗ = X∗ ∪ Y ∗ and

(X ∪ Y )∗ = X∗ ∩ Y ∗
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(ii) |Γ(X)| + |Γ(Y )| ≥ |Γ(X ∩ Y ∗)| + |Γ(Y ∩ X∗)|, and if equality holds, then (X ∩ Y ∗)∗ = X∗ ∪ Y and

(Y ∪X∗)∗ = X ∪ Y ∗

Proof. (i) First note that

|Γ(X)|+ |Γ(Y )| = |Γ(X ∪ Y )|+ |Γ(X) ∩ Γ(Y )|+ |Γ(X) ∩ Y |+ |Γ(Y ) ∩X|

and

K ∪ Γ(X ∩ Y ) = [Γ(X) ∩ Γ(Y )] ∪ [Γ(X) ∩ Y ] ∪ [Γ(Y ) ∩X],

where

K = [Γ(X − Y ) ∩ Y ] ∪ [Γ(Y −X) ∩X] ∪ [Γ(X − Y ) ∩ Γ(Y −X)− (X ∩ Y )].

These can be seen from the diagram in Figure 1.

X Y

(a) (b)

(c)

(f)

(e)
(g)

(h)

(d)

Figure 1

For example, Γ(X ∩ Y ) = (c)∪ (g)∪ (h) and Γ(X ∪ Y ) = (a)∪ (b)∪ (c)∪ (d). The equalities can be

verified in this way. In particular, the set K has been constructed as K = (d) ∪ (e) ∪ (f), and we have

Γ(X ∩ Y ) ⊆ [Γ(X) ∩ Γ(Y )] ∪ [Γ(X) ∩ Y ] ∪ [Γ(Y ) ∩X],

with equality if and only if K = ∅. Thus,

|Γ(X)|+ |Γ(Y )| = |Γ(X ∪ Y )|+ |Γ(X) ∩ Γ(Y )|+ |Γ(X) ∩ Y |+ |Γ(Y ) ∩X|

≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )|.

If equality holds, then

(X ∩ Y )∗ = V − [(X ∩ Y ) ∪ Γ(X ∩ Y )]

= V − [(X ∩ Y ) ∪ (Γ(X) ∩ Γ(Y )) ∪ (Γ(X) ∩ Y ) ∪ (Γ(Y ) ∩X)]

= V − [(X ∪ Γ(X)) ∩ (Y ∪ Γ(Y ))]

= [V − (X ∪ Γ(X))] ∪ [V − (Y ∪ Γ(Y ))]

= X∗ ∪ Y ∗.

Note that

X ∪ Y ∪ Γ(X) ∪ Γ(Y ) = X ∪ Y ∪ Γ(X ∪ Y )
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since Γ(X) ∪ Γ(Y )− Γ(X ∪ Y ) ⊆ X ∪ Y . Thus

X∗ ∩ Y ∗ = [V − (X ∪ Γ(X))] ∩ [V − (Y ∪ Γ(Y ))]

= V − (X ∪ Y ∪ Γ(X) ∪ Γ(Y ))

= V − (X ∪ Y ∪ Γ(X ∪ Y ))

= (X ∪ Y )∗.

Thus X∗ ∩ Y ∗ = (X ∪ Y )∗ actually holds in general, and does not require equality of the inequality in

the proposition.

(ii) First note that for any X,Y ⊆ V , if v ∈ Γ(X ∩ Y ), then v ∈ Γ(X)∩ Y , v ∈ Γ(Y )∩X, or Γ(X)∩Γ(Y ).

This can also be seen in Figure 1. Combining this with Γ(X∗) ⊆ Γ(X) for any X ⊆ V , we have

Γ(X ∩ Y ∗) ⊆ [Γ(X) ∩ Y ∗] ∪ [Γ(Y ) ∩X] ∪ [Γ(X) ∩ Γ(Y )]

Γ(Y ∩X∗) ⊆ [Γ(Y ) ∩X∗] ∪ [Γ(X) ∩ Y ] ∪ [Γ(X) ∩ Γ(Y )]
(1)

Now we write Γ(X) and Γ(Y ) as unions of disjoint sets to obtain

|Γ(X)|+ |Γ(Y )| = |[Γ(X) ∩ Y ] ∪ [Γ(X) ∩ Y ∗] ∪ [Γ(X) ∩ Γ(Y )]|

+ |[Γ(Y ) ∩X] ∪ [Γ(Y ) ∩X∗] ∪ [Γ(X) ∩ Γ(Y )|

= |Γ(X) ∩ Y |+ |Γ(X) ∩ Y ∗|+ |Γ(X) ∩ Γ(Y )|

+ |Γ(Y ) ∩X|+ |Γ(Y ) ∩X∗|+ |Γ(X) ∩ Γ(Y )|

= |[Γ(X) ∩ Y ∗] ∪ [Γ(Y ) ∩X] ∪ [Γ(X) ∩ Γ(Y )]|

+ |[Γ(Y ) ∩X∗] ∪ [Γ(X) ∩ Y ] ∪ [Γ(X) ∩ Γ(Y )]|

≥ |Γ(X ∩ Y ∗)|+ |Γ(Y ∩X∗)|,

where the last inequality is due to the subsets in 1. In particular, equality holds when the subsets in 1

give equality, and then in this case

(X ∩ Y ∗)∗ = V − (X ∩ Y ∗ ∪ Γ(X ∩ Y ∗))

= V − ([X ∩ Y ∗] ∪ [Γ(X) ∩ Y ∗] ∪ [Γ(Y ) ∩X] ∪ [Γ(X) ∩ Γ(Y )])

= V − ([X ∪ Γ(X)] ∩ [Y ∗ ∪ Γ(Y )])

= [V − (X ∪ Γ(X))] ∪ [V − (Y ∗ ∪ Γ(Y ))]

= X∗ ∪ Y

and (Y ∩X∗)∗ = X ∪ Y ∗ similarly.

�

4. A New Structural Lemma for 2-to-3 Augmentation in VC-SNDP

We now turn our attention to the case of general requirements rst ∈ {0, 1, 2, 3}, and attempt to generalize

the ideas used for the rooted case in [Nutov, 2009]. In this section, we describe basic properties similar to

those in the rooted case that still hold, and prove a lemma analogous to Lemma 2.3 from [Nutov, 2009] that

only holds when augmenting from ` = 2 to ` = 3 (we call this the 2-to-3 augmentation). Together, these can

give a basis for an algorithm similar to that of [Nutov, 2009].

As in Section 2, we are given a complete graph G = (V,E) with edge costs ce for e ∈ E, and requirements

rst for s, t ∈ V . We desire a set of edges F ⊆ E of minimum cost such that each pair of vertices s, t is

connected by rij vertex-disjoint paths. As before, we wish to consider an augmentation framework.
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Let J = (V,EJ) be a subgraph of G. Let κJ(s, t) denote the maximum number of internally-vertex-disjoint

paths from s to t in the subgraph J . Define ΓJ(X) = Γ(X) = {t ∈ V −X : st ∈ EJ for some s ∈ X}, the

set of neighbours of X in J , and let X∗ = V − (X ∪ Γ(X)).

Let R ⊆ E be the set of edges such that r(s, t) 6= 0 and let T ⊆ V be the set of nodes that are endpoints

of edges in R, called terminals. Assume that the subgraph J has cost 0 and κJ(s, t) = 2 for all (s, t) ∈ R.

Thus we are considering an instance of the 2-to-3 SND Augmentation problem, where we wish to find an

augmenting set of edges I of minimum cost such that the connectivity between requirement pairs (s, t) ∈ R
is at least 3 in G+ I.

Definition 5 (s,t-tight, core). Given (s, t) ∈ R, a node subset X ⊆ V is (s, t)-tight, or tight for (s, t), if

|{s, t} ∩X| = |{s, t} ∩X∗| = 1 (we say X separates s and t), and |Γ(X)| = 2. We call X tight if it is tight

for some (s, t) ∈ R. If X is tight for every pair of endpoints of edges in R′ ⊆ R, we say X is tight for R′.

If every t ∈ T ′ ⊆ T is the endpoint of some edge for which X is tight, we will also say that X is tight for

T ′. Inclusion-minimal tight sets are called cores. Let C = CJ = {C1, ..., Cν} denote the set of cores in J . Let

Ti ⊆ T denote the set of nodes such that each t ∈ Ti is an endpoint of an edge for which Ci is tight, and let

TX denote the same for X. Similarly let Ri ⊆ R denote the set of edges for which Ci is tight, and RX the

same for X.

The ideas we require can be alternatively formulated in terms of bisets. A biset is a pair of sets of vertices

X̂ = (X,X+) such that X ⊆ X+. Let Γ(X̂) = X+ \X and X∗ = V \X+. Let δJ(X̂) be the set of edges

with one end in X and the other in X∗. We can then define a tight biset for (s, t) ∈ R to be one where

|X ∩ {s, t}| = |X∗ ∩ {s, t}| = 1 and |Γ(X̂)| + |δJ(X̂)| = 2. We can verify that if X̂ is a tight biset, then X

is a tight set using our definition above and Γ(X̂) ⊆ ΓJ(X), the set of neighbours of X in the subgraph J .

The biset formulation is useful for results about families of sets; in these results, we have few results about

families of sets, and so we continue to use notation regarding vertex sets and their neighbourhoods.

Proposition 7 regarding vertex sets and their neighbourhoods still holds in this case, and we use it to

prove the following lemma.

Lemma 8. (1) If each of X ∩ Y and X ∪ Y separate some pair of terminals, then X ∩ Y and X ∪ Y
are tight.

(2) If each of X ∩ Y ∗ and X∗ ∩ Y separate some pair of terminals, then X ∩ Y ∗ and X∗ ∩ Y are tight.

Proof. (1) We have

2 + 2 = |Γ(X)|+ |Γ(Y )|

≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )|

≥ 2 + 2

where the last inequality follows from the fact that each of X ∩ Y and X ∪ Y separate some pair of

terminals. Thus equality holds throughout, and X ∩ Y and X ∪ Y are tight.

(2) We have

2 + 2 = |Γ(X)|+ |Γ(Y )|

≥ |Γ(X ∩ Y ∗)|+ |Γ(X∗ ∩ Y )|

≥ 2 + 2

where the last inequality follows from the fact that each of X ∩ Y ∗ and X∗ ∩ Y separate some pair

of terminals. Thus equality holds throughout, and X ∩ Y ∗ and X∗ ∩ Y are tight.

�
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Lemma 9 provides some structure to the tight sets ofG that is analogous to the case of rooted requirements,

as covered in [Nutov, 2009]. This lemma does not hold for arbitrarily high requirements in the augmentation

framework for the case of general requirements.

Lemma 9. For any tight sets X and Y such that X ∩ Y ∩ (TX ∪ TY ), either X ∩ Y is tight, or X ∩ Y ∗ and

X∗ ∩ Y are tight.

Proof. Let X and Y be tight sets that X ∩ TX ∩ Y 6= ∅. If X ⊆ Y or Y ⊆ X then X ∩ Y is trivially tight,

so suppose otherwise. Let (s1, t1) ∈ RX such that s1 ∈ X ∩ Y .

If t1 ∈ Y ∗, then X ∩ Y , X ∪ Y both separate s1 and t1, and so are tight. So we can assume that t1 ∈ Y
or t1 ∈ Γ(Y ).

Since Y does not separate s1 and t1, it must be tight for some other pair of terminals, say (s2, t2), with

s2 ∈ Y . If t2 ∈ X∗, then X ∩ Y separates s1 and t1 and X ∪ Y separates s2 and t2, and thus both are tight.

So we can assume that t2 ∈ X or t2 ∈ Γ(X). Note that in the arguments so far, it does not matter where s2

is with regard to X. This is true for the rest of the proof as well.

There are 4 more cases to consider, corresponding to whether t1 ∈ Y or t1 ∈ Γ(Y ) and whether t2 ∈ X or

t2 ∈ Γ(X).

(1) If t1 ∈ Y and t2 ∈ X, then Y ∩X∗ separates s1 and t1 and X ∩ Y ∗ separates s2 and t2. Thus they

are both tight.

(2) If t1 ∈ Γ(Y ) and t2 ∈ Γ(X), then since t1 6= t2 (as otherwise, e.g., X is not tight for (s1, t1)), we

have |Γ(X ∪ Y )| ≥ 2. Since X ∩ Y separates s1 and t1, |Γ(X ∩ Y )| ≥ 2, and so both are equal to 2

and hence X ∩ Y is tight.

(3) If t1 ∈ Γ(Y ) and t2 ∈ X, then assume for a contradiction that |Γ(X ∪ Y )| ≤ 1. Then Γ(X) ⊆ Y .

Since Γ(X ∩ Y ∗) ⊆ (Γ(Y )∩Γ(X))∪ (Y ∗ ∩Γ(X))∪ (Γ(Y )∩X), we then conclude that Γ(X ∩ Y ∗) ⊆
Γ(Y )∩X. Then every path from t2 ∈ X ∩Y ∗ to s2 ∈ Y must use at least one vertex from Γ(Y )∩X.

But |Γ(Y ) ∩ X| ≤ 1, since |Γ(Y )| = 2 and one neighbour of Y is t1, which is in X∗. Therefore

κJ(s2, t2) ≤ 1, a contradiction. Hence |Γ(X ∪ Y )| ≥ 2. But since X ∩ Y separates s1 and t1,

|Γ(X ∩ Y )| ≥ 2, and so both are equal to 2 and therefore X ∩ Y is tight.

(4) This case is very similar to case 3, but we write it out for completeness. If t1 ∈ Y and t2 ∈ Γ(X),

then assume for a contradiction that |Γ(X ∪ Y )| ≤ 1. Then Γ(Y ) ⊆ X. Since Γ(X∗ ∩ Y ) ⊆
(Γ(X)∩Γ(Y ))∪(X∗∩Γ(Y ))∪(Γ(X)∩Y ), we then conclude that Γ(X∗∩Y ) ⊆ Γ(X)∩Y . Then every

path from t1 ∈ X∗∩Y to s1 ∈ X must use at least one vertex from Γ(X)∩Y . But |Γ(X)∩Y | ≤ 1, since

|Γ(X)| = 2 and one neighbour of X is t2, which is in Y ∗. Therefore κJ(s2, t2) ≤ 1, a contradiction.

Hence |Γ(X ∪ Y )| ≥ 2. But since X ∩ Y separates s1 and t1, |Γ(X ∩ Y )| ≥ 2, and so both are equal

to 2 and therefore X ∩ Y is tight.

�

Taking one of the sets in the above lemma to be some core Ci ∈ C, we get the following lemma as a

corollary.

Lemma 10. For any tight set X and any Ci ∈ C, either Ci ∩X ∩ (TX ∪ Ti) = ∅ or Ci ⊆ X.

Proof. Suppose Ci ∩X ∩ (TX ∪ Ti) 6= ∅. Then by Lemma 3, we have that either X ∩Ci or X∗ ∩Ci is tight.

This contradicts the minimality of Ci unless Ci ⊆ X. �

5. Counterexamples to Lemma 9 with Higher Requirements

Here we provide counterexamples to Lemma 9 in augmentation instances with higher requirements. We

use the same notation and definitions as Section 4.
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We consider augmentations from 4 to 5 and from 3 to 4, and give counterexamples to Lemma 9 in each

case. These counterexamples must consist of tight sets X and Y that intersect on some terminal for which

X is tight, but the desired sets are not tight. We can verify that the graphs in Figure 2 and 3 satisfy these

conditions for 4-to-5 and 3-to-4 augmentation respectively.

X

Y

Figure 2

X

Y

Figure 3

There is no significance to the gray edges; the colour is simply for visibility. Red dashed lines indicate

terminal pairs.

The graph in Figure 3 requires some stronger properties to be an appropriate counterexample. In partic-

ular, we must have that the terminal in Y for which Y is tight must be in Γ(X) or X, as well as the other
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conditions in the relevant case of the proof of Lemma 9 for 2-to-3 augmentation. The proof that this is the

only bad case is very similar to the proof of Lemma 9, with only one case in that proof that is no longer

true. This kind of structural requirement for a bad case gives some hope that a workaround can be found.

6. Extended Halosets: A Potential Framework for 2-to-3 Augmentation

In trying to extend the ideas of [Nutov, 2009] to the case of general requirements for 2 to 3 augmentation

in VC-SNDP, it is no longer as easy to define a family F of tight sets such that, as was done in that paper:

(1) F can be decomposed into a constant number of biuncrossable families.

(2) Every terminal t for which there exists a tight set containing t is contained in some tight set X ∈ F .

Condition 1 is necessary for the use of a 2-approximation algorithm for covering biuncrossable families

that is the basis of the algorithm presented in [Nutov, 2009]. Condition 2 is satisfied in the case of rooted

requirements in that paper, and is related the the ”progression” of the cores at each iteration of the covering.

We recall some definitions from [Nutov, 2009] here: the cores Ci are the minimal tight sets, and the haloset

Mi is the maximal tight set containing Ci and no other core. The family F is defined as F = {X : X ⊆
Mi for some Mi, X is tight}. Using the basic lemmas presented in the paper, we conclude that Condition 2

is satisfied. This allows us to ignore terminals that are not contained in some Ci, as the tight sets containing

those terminals will be covered when we cover the set F . This step is important, as it allows us to make

important conclusions about the number of cores after covering F .

The situation with general requirements is more complicated. Basic modifications to the definition of Mi

for the general case that satisfies Condition 2 leaves many difficulties for Condition 1. Definitions that satisfy

Condition 1 more easily do not satisfy Condition 2. In the latter case, covering F may not make very much

progress in a solution at all, since we may end up covering very few sets. Thus we need an approach that

gives us a family F satisfying Condition 2 that we can properly identify the difficulties for Condition 1. We

present one possibility here.

Many details are omitted from the following exposition. Many of the proofs are very similar to proofs in

[Nutov, 2009] or elsewhere in these documents, and by the exploratory nature of this discussion, most of the

ideas are not fully fleshed out. The author extends his apologies to the reader.

Definition 6. For each terminal ti ∈ T , let Ci be the inclusion-minimal tight set containing ti. The set

Ti is the set of terminals for which Ci is tight. The halo-family of Ci is defined as H(Ci) = {X : Ci ⊆
X,X is tight , X ∩ T = Ci ∩ Ti}. The haloset of Ci, Mi, is the inclusion-maximal member of H(Ci). Then

F =
⋃
iH(Ci).

It is clear by this definition that Condition 2 is satisfied, as every terminal is in a core. We refer to this

formulation of cores as ”extended halosets”, as it is an attempt to cover sets beyond the halosets of the

minimal tight sets.

Unfortunately, we have lost the true minimality property of the cores with this definition. The first issue

that this causes is that basic lemmas about the structure of the cores no longer hold. In particular, Lemma

10 from Section 4 no longer holds, even in the case where X is itself a core. See a counterexample in Figure

4. Core C1 is minimal for t1, t3 and core C2 is minimal for t2, t4 (these pairs are denoted with a blue dashed

line). The other dashed red lines are the other requirements. The gray and black lines are edges; the gray

is used only for visibility purposes.

Note that in this counterexample, we required that t1 ∈ Γ(C2) and t2 ∈ Γ(C1). When considering the

proof of Lemma 10, we can see that this must be the case for a counterexample. Since |Γ(C1)| = |Γ(C2)| = 2,

we conjecture that we can partition the cores into families such that Lemma 10 holds within a family, by

using a colouring argument on an auxiliary graph as in [Nutov, 2009].
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C1

C2

t2

t1
t3

t4

Figure 4

We now move on to identifying the reasons why F may not be biuncrossable, and suggest how to partition

F to avoid these.

Let X,Y ∈ F . Suppose X,Y ∈ H(Ci) for some Ci. Then X ∩ Y and X ∪ Y are tight.

If X ∈ H(Ci) and Y ∈ H(Cj) for some Ci and Cj , then we consider several different cases.

Firstly, if Ci ∩Cj ∩ (Ti ∪Tj) = ∅, then this case is very similar to what was shown in [Nutov, 2009]; either

X ∩ Y ∗ and X∗ ∩ Y are tight, or we have Ci ∩ Ti ⊆ Γ(Mj) or Cj ∩ Tj ⊆ Γ(Mi). Then the cores satisfying

one of the two latter conditions are partitioned into different families using a colouring argument. Given the

results of Lemma 10, we can do the same, and partition into a constant number of families such that, within

a family, neither Ci ∩ Ti ⊆ Γ(Mj) nor Cj ∩ Tj ⊆ Γ(Mi) is satisfied between cores.

If Ci ∩ Cj ∩ (Ti ∪ Tj) 6= ∅, then using Lemma 10 we can show that one core must be contained in the

other, say Cj ⊆ Ci.
If Ci is tight for some terminal in Cj , then X and Y are tight for some terminal in common, so X ∩ Y

and X ∪ Y are both tight. Otherwise, we assume that Ci is not tight for any terminal in Cj .

Note that if Mj ∩ Ci and Mj ∪ Ci are tight, then so are X ∩ Y and X ∪ Y , so we will identify the cases

when this is not true. Since Mj ∩ Ci separates all the terminal pairs for which Cj is tight, then Mj ∪ Ci
cannot also do so. The only way for this to be the case is if C∗i ∩ Ti ⊆ Γ(Mj), i.e. the other ends of the

terminal pairs for Ci are neighbours of Mj . This condition is similar to the previous two identified, and so

we hope to make a similar colouring argument here so that we can avoid this case.

Unfortunately, the in-degree colouring argument made in [Nutov, 2009] does not apply to the auxiliary

graph made by adding arcs from Cj to Ci when Cj ⊆ Ci and C∗i ∩ Ti ⊆ Γ(Mj), as both the in-degree

and out-degree of some node can be unbounded. Illustrations of these cases are in Figures 5 and 6. The

illustrations do not include all vertices, but rather just terminals and important vertices for illustrating the

neighbourhoods of sets.

However, it does appear that some kind of colouring argument may be possible. The cases that occur in

the two figures cannot happen simultaneously, as the layout of the terminal pairs must be different. That
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Figure 5. The black outlines are different cores, the red dashed lines denote requirement

pairs, and the blue and orange outlines denote the halosets of the smallest and second

smallest cores respectively. Using an arbitrarily large construction of this type, we see the

in-degree in the auxiliary graph of the largest core pictured could be unbounded.

Figure 6. The black outlines are different cores, the red dashed lines denote requirement

pairs, and the blue outline denotes the haloset of the smallest core. Using an arbitrarily

large construction of this type, we see the out-degree in the auxiliary graph of the smallest

core pictured could be unbounded.

is to say, while one node of the auxiliary graph can have both unbounded in- and out-degree, not all nodes

can. It is possible that we could find a bound on the number of arcs in a subgraph of the auxiliary graph.

A final complication arises from the fact that a core can be contained in several other cores. However,

the number of cores that intersect is bounded by a constant, as shown in Section 7, so this could potentially

also be avoided.
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Thus we conclude with the following conjecture.

Conjecture 11. The family F can be partitioned into subfamilies such that, within a subfamily, if Cj ⊆ Ci,
then C∗i ∩ Ti 6⊆ Γ(Mj).

Together with the previously mentioned partitions, we then get:

Corollary 12. The family F can be partitioned into a constant number of biuncrossable families.

We can then cover these families using the 2-approximation algorithm.

Unfortunately, this would still not give us a constant approximation factor for the 2-to-3 augmentation.

In the rooted case, as shown in [Nutov, 2012a], after covering F , we can eventually guarantee that each core

is tight for a certain number of terminals. In our case, we do not have this guarantee, so the best we can

achieve is a logarithmic factor in the number of terminals |T |. Nonetheless, depending on what constant

may come out of the required partitioning arguments, this method may still be a small improvement on the

otherwise best-known algorithm found in [Chuzhoy and Khanna, 2009].

7. An Upper Bound on the Maximum Number of Intersecting Cores

In this section, we continue to work in the framework of the 2-to-3 augmentation, using the definitions of

Section 4, and prove a lemma that may be useful in future work.

One property that holds in the case of rooted connectivity is that minimal tight sets (cores) do not

intersect on terminals, i.e. Ci ∩ Cj ∩ T = ∅. Lemma 10 essentially says something similar for the 2-to-3

augmentation; we can conclude that cores do not intersect on terminals for which one of the cores is tight.

One further result we get using this lemma is a bound on the number of cores that contain any given vertex.

While we have not explicitly used this result anywhere, there are many places where it appeared it could be

necessary in the future, so we record it here.

Proposition 13. Given some v ∈ V , there are at most 4 cores that contain v.

Before we give the proof, we will note that main fact that we use to prove the proposition. By Lemma

10, every core must have some vertex not contained in any other core, namely, some terminal for which

it is tight. Also, the subgraph induced by the vertices of a core Ci is connected; otherwise, the connected

component of Ci containing some terminal in Ti must be tight, contradicting minimality. Thus there must

be a path Pi from v to Ci \
⋃
j 6=i Cj that is contained in Ci for all cores Ci containing v.

Together with a restriction on the neighbourhood size of the cores, this fact bounds the number of cores

that can contain a single vertex. Figure 7 gives an illustration that the above condition can be satisfied with

4 cores in the 2-to-3 augmentation.

The proof of Proposition 14 essentially demonstrates that this construction of the paths is the best possible.

The main argument is in the proof of the following lemma.

Lemma 14. Suppose there are 4 sets X1, X2, X3, X4 ⊆ V such that v ∈ X1 ∩X2 ∩X3 ∩X4 for some v ∈ V ,

and |Γ(Xi)| = 2 for each i. Suppose there are 4 paths P1, P2, P3, and P4 from v to X1, X2, X3, and X4

respectively, where Xi = Xi \
⋃
j 6=iXj, such that Pi ⊆ Xi. Then |Γ(Xi) ∩

⋃
i Pi| ≥ 2 for i ∈ {1, 2, 3, 4}.

Proof. The proof is illustrated in Figure 8. We proceed by contradiction and assume that |Γ(X1)∩
⋃
i∈{2,3,4} Pi| =

1. Note that this quantity cannot be 0, as there must be some path leaving X1 (say, P2). P1 then contains

at least one neighbour of each of X2, X3 and X4. Also, the neighbour of X1 in the union of the paths must

be in X2 ∩X3 ∩X4 \X1, as otherwise there would be no path Pi contained in Xi for some other Xi. Lastly,

the remainder of the paths P1, P2 and P3 must have no vertices in X1, as otherwise |Γ(X1)| ≥ 2.
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C4

C1

C3

C2

v

Figure 7. The indicated edges and vertices are those that belong to one of the paths Pi

The remainder of the proof is essentially a repetition of this argument with the remaining three sets,

starting from the single vertex in Γ(X1). Since X2 has a neighbour in P1, it can only have one more

neighbour in the remaining paths. Thus this neighbour must be in X3 ∩X4 \ (X1 ∪X2), for the same reason

as above. The remainder of the path P2 then contains one more neighbour for each of X3 and X4.

From this point, the paths P3 and P4 require at least one more vertex each to be completed. However,

these extra vertices would add more vertices to the neighbourhoods of X3 and X4, each of which are already

size 2. Thus the paths cannot exist, and the lemma follows.

�

X4

X1

X3

X2

v

Figure 8. Proof of Lemma 3. The red path is an example of a path P1. The remainder

of the paths must then use the blue edge. The orange path is an example of the remainder

of P2. The remaining paths must then use the green edge. From this point, we cannot

complete the construction of the paths without adding more than two neighbours to some

set.

The proof of Proposition 14 then follows by noting that the cores satisfy the conditions for Lemma 15,

and any core C5 that would also contain v must have its own path P5 as well. But then P5 would add more

neighbours to at least one of the existing 4 cores, contradicting the fact that they are tight sets.
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8. Generalizing the Steiner Forest Algorithm

This section is concerned with a different approach to VC-SNDP which will require more time to explore

fully. We consider a potential alternative to finding a constant factor approximation algorithm for the

edge-connectivity version of SNDP, EC-SNDP, with the hope that some ideas may transfer to VC-SNDP.

For reference, the EC-SNDP problem is as follows: given a graph G = (V,E) with edge costs ce for e ∈ E,

and requirements rst for each pair of vertices s, t ∈ V , we desire a set of edges F ⊆ E of minimum cost such

that each pair of vertices s, t is connected by rst edge-disjoint paths.

When rst ∈ {0, 1}, this is known as the Steiner Tree, or Generalized Steiner Forest, Problem. This problem

has a quite simple primal-dual 2-approximation algorithm (see [Williamson and Shmoys, 2011], page 170 for

the algorithm and its analysis). Here, we explore a direct generalization of this primal-dual 2-approximation

algorithm in hopes that it will lead to an alternate 2-approximation algorithm for EC-SNDP (an existing

2-approximation algorithm can be found in [Jain, 2001]).

The following LP models the problem described above, where we assume that requirements are either 0

or k and S denotes the family of subsets of V satisfying |δ(S)| < k for all S ∈ S:

minimize
∑
e∈E

cexe

subject to
∑
e∈δ(S)

xe ≥ k, ∀S : s ∈ S

xe ≥ 0, ∀e ∈ E
−xe ≥ −1, ∀e ∈ E

The following is the dual:

maximize
∑
S∈S

yS −
∑
e∈E

ze

subject to
∑

S:e∈δ(S)

yS − ze ≤ ce, ∀e ∈ E

yS ≥ 0, ∀S ∈ S
ze ≥ 0, ∀e ∈ E

Let C denote the family of minimal members of S. The algorithm proceeds as follows:

(1) Initialize all dual variables to 0, and out solution F to ∅.
(2) Uniformly increase the dual variables y until the the dual constraint for some new edge e is tight.

Denote the amount of this increase by ε.

(3) Increase ze by ε · |{C ∈ C : e ∈ δ(C)}| for every edge e ∈ F .

(4) Add e to F .

(5) Repeat until the set C is empty. Perform a ”reverse-delete” step to discard unnecessary edges.

(6) Return F.

Throughout the algorithm, we have maintained a feasible dual solution through increases in the z variables.

Before we proceed with the analysis, we note one property of the edges for which we are increasing the

variables z in step 3 by a nonzero amount. Denote the set of these edges |Ez|.

Lemma 15. At any iteration of the algorithm, we have that∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}| ≤ (k − 1)|C|
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Proof. Noting that for each set C ∈ C, |δ(C)| ≤ k − 1, we see that each C can be counted at most k − 1

times in the L.H.S. Thus∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}| ≤ (k − 1)|{C ∈ C : e ∈ δ(C) for some e ∈ Ez}|

≤ (k − 1)|C|

�

We now continue with the primal-dual analysis.

At the end of the algorithm, we have

∑
e∈F

ce =
∑
e∈F

 ∑
S:e∈δ(S)

yS − ze

 =
∑
S

|δ(S) ∩ F |yS −
∑
e∈F

ze.

We wish to show that this quantity is less than

f(k) ·

(∑
S

kyS −
∑
e∈E

ze

)
,

since we will then have an f(k)-approximation.

At any iteration of the algorithm, the L.H.S of the inequality is increased by

ε ·

(∑
C

|δ(C) ∩ F | −
∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}|

)
and the R.H.S. is increased by

ε · f(k) ·

(
k · |C| −

∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}|

)
.

Thus to prove the desired inequality we simply need to show that∑
C

|δ(C) ∩ F | −
∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}| ≤ k · f(k) · |C| − f(k) ·
∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}|.

Equivalently, we can show∑
C

|δ(C) ∩ F | ≤ k · f(k) · |C| − (f(k)− 1) ·
∑
e∈Ez

|{C ∈ C : e ∈ δ(C)}|.

Note that from Lemma 1, we have that the R.H.S. of this inequality is greater than or equal to

k · f(k) · |C| − (f(k)− 1) · (k − 1) · |C| = f(k) · |C|+ (k − 1) · |C|

= (f(k) + k − 1) · |C|.

Therefore it suffices to show the following:

Conjecture 16. At any iteration of the algorithm, we have∑
C

|δ(C) ∩ F | ≤ (f(k) + k − 1) · |C|

For the case of k = 1, that is, the Steiner forest problem, this is proven with f(k) = 2 in order to get the

known 2-approximation. It is not clear whether the inequality holds in this more general case, what f(k)

is needed, or whether the same techniques from the proof of the k = 1 case can be generalized. We leave

further work on this approach to the reader.
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9. Conclusion

In this project, we explored a few different approaches focused answering the open problem of whether VC-

SNDP with requirements rst ∈ {0, 1, 2, 3} admits an approximation algorithm with constant approximation

factor. While no conclusive results were found, we identified a few areas of interest and proved several basic

lemmas that may be helpful in future work.

The open questions in this area remain open, and this document records one first attempt towards a

solution. Hopefully this record can prove useful to future researchers interested in answering these questions.
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