
A Survey of Rowhammer: Fault Injection by Exploiting Electrical
Interactions in DRAM

PHILIP HODGES
Rowhammer is the name that has been given to a relatively recently discov-

ered vulnerability in newer DRAM modules. In order to pack more memory

into a smaller space, the density of the memory in these formats leads to the

possibility of electrical interference between rows of bits stored in memory.

Rowhammer attacks exploit this by executing many read/write operations

to induce specific memory access patterns, causing memory faults. Research

effort over the last couple of years has shown that the Rowhammer phenom-

enon is exploitable in practice, allowing programs in user space to gain root

access in a variety of scenarios.

I present a survey of Rowhammer, discussing the most significant con-

tributions to the security literature and a broad view of the state of current

research.

1 INTRODUCTION
A key security property of a computer system is memory isolation:

accesses to one memory address should not affect data stored in

other memory addresses. However, as newer DRAM modules are

built with more and more capacity, the cells are made smaller and

are more densely packed. Electrical interference effects between

memory cells become a possibility. It turns out that these interfer-

ence effects can be amplified using specific memory access patterns.

This undesirable behaviour has been known for some time, and was

originally thought to only be an integrity issue [9], where random

errors may occur. Researchers have been able to take advantage

of these errors in order to develop powerful exploits. They have

termed attacks related to these techniques “Rowhammer" attacks.

Security research into Rowhammer began in 2014, and has since

progressed rapidly, with subsequent publications showing an in-

creasing variety and severity of exploits. The Rowhammer phenom-

enon went from a potential reliability issue to a pervasive, severe,

and difficult-to-prevent hardware-based security flaw in only a few

years.

I present a survey of the Rowhammer literature, starting from

the first publications, up until very recent publications representing

the best-known attacks and the possible mitigations in place.

1.1 Survey Methodology
To review the literature, I started with the publication that originally

introduced Rowhammer to the security community [8]. I then went

through all the most cited publications which cited this original

paper or subsequent research, working forward. This found the bulk

of the core literature on the subject. During a first reading of this

literature, I made note of and read other commonly referenced or

highly relied-on publications. Due to space constraints, not every

publication related to Rowhammer has been included. I included

well-written, influential papers, while also discussing enough of a

variety of publications to show the various ways Rowhammer can

be applied.

Author’s address: Philip Hodges.

I have written this survey with a narrative in mind, as opposed

to simply an accounting of the most recent research. I believe this is

appropriate, as Rowhammer is a relatively new phenomenon, and

the research is still in motion. Furthermore, Rowhammer is quite

unique among vulnerabilities, being potentially the only example

of a hardware fault that is so practically exploitable. Thus, “where

is the current research at?" may be less instructive to answer than

“how has the research progressed?" The evolution of a fault that

was once thought to be benign into a pervasive security issue is of

significant interest.

1.2 Overview of Survey
Section 2will cover the original publication that introduced Rowham-

mer. Section 3 covers the first exploit based on Rowhammer. Sections

4 to 6 cover major subsequent contributions from various authors

that improve techniques, find new attack vectors, and tackle previ-

ous suggestions for future research made by other authors. Section 7

discusses Rowhammer mitigations. Section 8 covers other situations

where researchers have been able to develop Rowhammer exploits.

2 ROWHAMMER: THE FIRST ITERATION
The paper “Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors" by Kim et al.

[8] introduced the idea of Rowhammer to a wide audience. While

the phenomenon of disturbance errors in DRAM was known, and

repeated row accesses were known to increase the number of errors,

Kim et al. were the first to fully study and characterize the behaviour

of these errors. Their work was exceptionally well-written, and

provided a foundation for future works to build on. In this section,

we will go through the main contributions of their paper as a means

to provide a full description of how Rowhammer works.

2.1 How DRAMWorks
A background in how DRAM works is necessary for understanding

Rowhammer. For this survey, we will not go into complete detail

on exactly how the circuits in DRAM are implemented. This detail

is necessary for understanding why Rowhammer errors occur, but

not how to cause them.

2.1.1 DRAM Organization and Instructions. DRAM is organized

as a collection of grids of individual memory cells. Each memory

cell stores a bit, represented by having a capacitor in a charged or

discharged state. The rows of the DRAMgrid are known aswordlines,
and the columns are known as bitlines. Each grid is known as a bank.
For each bank, there is a row buffer. A memory access works as

follows. Given a specific cell to access (specified by its row and

column addresses):

(1) First, ACTIVATE the row. This transfers the data in the row to

the row buffer. This operation is destructive (i.e. the data in

the row is lost), so the data in the row buffer is also copied

2 • Philip Hodges

back into the row at the same time. All subsequent accesses

to this row until the row is deactivated are served by the row

buffer.

(2) The desired column can be read from or written (READ/WRITE)
to through the row buffer. If many columns need to be ac-

cessed, they can all be accessed before the row is deactivated.

(3) The row is deactivated (PRECHARGE), and the row buffer is

cleared.

All these operations can be performed individually if given complete

access to the DRAM module.

A last important operation is the REFRESH instruction. DRAM

cells leak charge, and therefore will lose the value contained in them

over time. In order to avoid data loss, the cells need to be refreshed

often. Since activating a row also re-writes the data back into that

row, a REFRESH command is essentially identical to an ACTIVATE
command followed by a PRECHARGE command. In practice, REFRESH
commands perform these activations in bulk, refreshing many rows

at once.

Modern DRAM cells are guaranteed to have a retention time

of 64ms. Within this time frame, enough REFRESH commands are

issued to make sure that every row has been refreshed exactly once.

2.1.2 Disturbance Errors. The key observation is, as noted by Kim

et al. [8], when a wordline is repeatedly activated, some cells in

nearby rows will leak charge faster than usual. Critically, some cells

may not retain their charge for the whole guaranteed retention

period, and therefore will not be refreshed before they exhibit a

change in value. Kim et al. give some reasons why this might occur,

but here it suffices to say that it is due to various types of electrical

interference.

2.2 Code for Rowhammering
We now know how DRAM works and the type of accesses that

give rise to increased disturbance errors. The code to induce these

accessed is then very simple, and the example given by Kim et al. is

in Listing 1.

1 s t a r t :

2 mov (X) , %eax

3 mov (Y) , %ebx

4 c l f l u s h (X)

5 c l f l u s h (Y)

6 mfence

7 jmp s t a r t

Listing 1. Code to Trigger Rowhammer Effect

With suitably chosen addresses X and Y (addresses corresponding to
different rows in the same bank), this code will translate to repeated

ACTIVATE, READ, and PRECHARGE instructions issued to X and Y in

an alternating fashion. Note that both addresses are necessary, since

otherwise the row will be activated only once and read from many

times, while we want many activations. The clflush instruction

evicts the data that has just been read from the cache, so that all

the accesses indeed must be directly to the DRAM. Simplified, the

mfence instruction serves to ensure that previous memory access

instructions are completed before future ones are begun.

This simple code was able to induce thousands of errors in various

DRAM modules. It is easy to see that these types of errors could

lead to various kinds of data corruption. Kim et al. additionally

recognized that a smart attacker might be able go as far as using

Rowhammer-induced errors to hijack a system, but leave such a

task to future researchers.

2.3 Rowhammer Characterizations
Kim et al. provide extensive details on their experimental methodol-

ogy [8], which we will not reproduce here. They use this experimen-

tation to support several characterizations of the Rowhammer phe-

nomenon, which have been taken as axioms by future researchers,

so we will give a recap of their characterizations in this section.

Errors are Widespread. Kim et al. concluded that there are

likely to be many vulnerable cells (i.e. at least in the thousands) in

any recently manufactured DRAM module.

Access PatternMatters. Repeated activation of the row, and not
just repeated reads, are necessary to cause errors.

Errors Occur in Physically Adjacent Rows. While some dis-

crepancies are found (mainly attributed to address remapping), Kim

et al. concluded that errors were induced primarily in the two rows

that were physically adjacent to the row being activated.

Data Pattern Matters. Kim et al. Concluded that the pattern

of the data stored in the DRAM during testing (e.g. all zeros, all

ones, a checkerboard pattern) made a significant difference in the

number of errors induced. This can be partly explained by the fact

that discharge of cells happens in only one direction (i.e. charged

→ discharged).

Errors are Repeatable Many iterations of their experiments

yielded the same number of errors within a small margin, so vul-

nerable cells are reliably vulnerable.

VulnerableCells areNotWeakCellsCells vulnerable to Rowham-

mer are not those that happen to have a lower retention time.

Not Strongly Affected by Temperature While retention time

of cells is affected quite strongly by temperature, the number of

induced Rowhammer errors is not.

These last two points indicate that the reasons for the errors are

more complicated than simply a blanket reduction of retention time

of cells when exposed to Rowhammering.

2.4 Solutions
In this section, we describe the potential solutions put forth by

Kim et al. Their provided solutions were well thought-out, as many

solutions proposed by future researchers are some implementation

of the solutions first described in their paper.

2.4.1 Potential Solutions. Kim et al. provide the following 6 solu-

tions, all with significant drawbacks:

(1) Make better chips

(2) Correct errors by using ECC

(3) Increase refresh frequency of cells

(4) Have the manufacturer remap vulnerable cells

(5) Have the consumer remap vulnerable cells

(6) Identify often-used rows and refresh their neighbours

Since there may be many vulnerable cells, solutions 4 and 5 may

not work. Solution 1 would be nice, but is a bit optimistic.

A Survey of Rowhammer: Fault Injection by Exploiting Electrical Interactions in DRAM • 3

Solution 2 is promising, but current ECC memory incurs a 12.5%

overhead to allow detection of single bit flips. I will revisit ECC

memory later.

Solution 3 provides a good stop-gap, as it will help reduce errors.

However, in their analysis, Kim et al. note that to eliminate all errors

in some DRAM modules, the refresh frequency would have to be

once every 8.2ms, leading to up to a 35% overhead. This is therefore

not a workable solution for eliminating errors.

Solution 6 would work well, but there would be much difficulty

in trying to keep track of precisely which rows are activated most.

Kim et al. tried some alternatives, but the implementation was too

expensive for the performance observed. However, a variant on

this solution with much less overhead was their main proposal for

preventing Rowhammer errors.

2.4.2 Proposed Solution. Building on the idea from solution 6, Kim

et al. propose PARA (probabilistic adjacent row activation). As its
name suggests, the main idea of PARA is to, whenever a row is

activated, refresh one of its adjacent rows with some probability.

Kim et al. were able to choose a probability such that errors become

virtually nonexistent in adjacent rows. Even further increasing the

refresh probability (due to uncertainty about row address remap-

ping and thus adjacency information), their implementation only

incurred around a 0.2% overhead.

3 PROJECT ZERO: A FIRST EXPLOIT
As a follow-up to the Kim et al. paper, Seaborn and Dullien from

Google Project Zero took on their suggested future research task of

using Rowhammer-induced errors to hijack a system [12]. Their re-

sults were published on the Google Project Zero blog. They provide

many new ideas and insights throughout their blog post, as well

as experimental results of their own. I give a short recap of their

primary contributions here.

3.1 Address Selection
Kim et al. avoided extensive discussion on how the addresses of

the rows are picked in the code in Listing 1. Seaborn and Dullien

emphasize that the critical condition is that the addresses refer to

two different rows in the same bank. They propose several ways

of finding addresses that satisfy this condition, and introduce the

notion of double-sided hammering.

Using the physical address mapping. Using knowledge of

how a CPU’s memory controller maps physical addresses to DRAM

cells, as well as some additional information, one can pick different

rows that are likely in the same bank. This is the approach taken by

Kim et al.

Random address selection. A simple approach, and without

risk of using a poor strategy, is to randomly select addresses. On

a typical system, there could be a 1/16 chance that two randomly

chosen addresses are in the same bank, which is a good probability.

Increasing the number of addresses being hammered also helps this

method.

Selecting addresses using timing. Pairs of addresses that are
in the same bank will have slower uncached access time than those

that aren’t, and so can be found with fine-grained timing.

Double-sidedHammering Seaborn andDullien found that ham-

mering the two rows directly adjacent to a target row increased the

number of induced errors significantly. This is expected from the

characterizations of Kim et al. Called double-sided hammering, this

technique is more difficult to implement. It requires, in particular,

knowledge of the address offset between adjacent rows. In practice,

the desired addresses can be found experimentally, by determining

which offsets around a target row maximize the number of induced

errors.

3.2 Exploiting Bit Flips
The main goal of Seaborn and Dullien was to give a practical exploit

of the Rowhammer-induced errors. They point out that historically,

two things have often been true: that bugs that initially appear to

only be reliability issues often turn out to be security issues, and that

it is well-known among security researchers that single bit flips are

exploitable. Thus it is not unexpected that they were successful in

providing an exploit in this circumstance. They provide two exploit

methods in two different environments: Google Native Client (NaCl)

and x86-64 Linux.

3.2.1 Escaping from the NaCl Sandbox. The Google Native Client
provides a sandbox inwhich a subset of x86-64machine code can run.

This subset has been validated and determined to be safe. However,

bit flips in code corresponding to safe instructions can turn that code

into code with unsafe instructions. Seaborn and Dullien provide an

example of this.

NaCl uses the instructions in Listing 2 to do indirect jumps. Many

different bit flips may be exploitable, and we describe one here. If a

bit flip occurs in bit 0 of the register number in jmp *%rax, then it

will turn into jmp *%rcx. This latter command is an unconstrained

jump, which allows jumping to any address, as opposed to jumping

to only 32-byte aligned addresses, as NaCl usually allows. Since

other unsafe commands can be hidden inside safe ones, we can then

jump to shell code hidden inside NaCl-validated instructions.

and l $ ~31 , %eax

addq %r15 , %rax

jmp ∗% rax / / I n d i r e c t jump .

Listing 2. NaCl indirect jumps

This can be exploited with Rowhammer. First, fill the code area of

memory of NaCl with the indirect jump instructions. Then, Rowham-

mer this memory using the code in Listing 1 (with random addresses)

until a bit flips occurs. If the bit flip is exploitable as above, we can

use it to run shell code. Otherwise, continue hammering.

To mitigate this attack in NaCl, the clflush instruction has been

disabled. Unfortunately, this mitigation is not possible in all scenar-

ios.

3.2.2 Privilege Escalation in Linux. Seaborn and Dullien provide

an alternate exploit for a normal x86-64 process running on Linux.

This exploit is based on flipping bits in page tables, and escalating

privilege of the process to gain access to all of physical memory.

In particular, if we are able to modify a page table entry (PTE) so

that it points to a physical page that contains a page table of our

4 • Philip Hodges

process, then we will have read-write access to a page table of our

own process. Modifying this table will give us access to any physical

memory address on the system.

First, memory allocationmethods are used to ensure that allocated

memory ends up heavily fragmented. Then, at a high-level, the

desired bit flip in a page table can be induced (with high probability)

as follows (full details are included in the original blog post [12]):

(1) Repeatedly use mmap() on a data file to fill memory with page

tables, all of which point at the data file.

(2) Populate some of the PTEs by accessing their corresponding

pages.

(3) Run munmap() on the target page. The kernel will, with high

probability, reuse this page for a new page table.

Now, Rowhammer this area of code using the code in Listing 1 until

a bit flips occurs. These bit flips are harder to detect than the NaCl

exploit, but scanning the mapped region to see if any page tables

do not point at the data file is sufficient. If one is found, there is a

chance that it is pointing to a page table for the address space of

our process.

We can then determine which virtual address our page table

points to, and if everything worked as desired, then we have write

access to the page table of our own process. As noted above, this

gives us write access to all of physical memory.

From here, it is evident a serious attack can be completed. Seaborn

and Dullien give a few examples with various advantages and draw-

backs: modify an SUID-root executable, modify a library that an

SUID executable uses, etc.

It is worth noting that a much more recent paper by Wu et al.

[16] is able to successfully rout this page table-based attack with a

small modification to the OS memory allocator.

3.3 Alternatives to clflush
Another important contribution by Seaborn and Dullien was the

identification of alternatives to the clflush instruction. They sug-

gest several different possibilities, some of which are implemented

in future papers. These include normal memory accesses in specific

patterns, non-temporal memory accesses, atomic memory accesses,

uncacheable pages, and others.

3.4 New Proposed Mitigation
Seaborn and Dullien discuss some of the same mitigations as Kim

et al. They give some evidence to support the fact that certain

newer DRAM modules may be implementing some of the more

basic mitigations such as increased refresh rates.

They also propose another new solution: using CPU performance

counters to detect hammering. Any method of hammering requires

many cache misses, and so monitoring for abnormal amounts of

cache misses can detect a Rowhammer attack. Future research is

needed, as it is not clear exactly what to do if hammering is detected,

and how common false positives will be.

4 ROWHAMMER WITH REGULAR MEMORY ACCESSES
One of the next papers to be published on Rowhammer following

the Project Zero blog post [12], by Gruss, Maurice, and Manguard

[6], advances the research in two significant ways. They develop a

framework for studying cache eviction strategies, allowing them to

trigger Rowhammer without using clflush, and they implement a

Rowhammer attack in JavaScript, that runs in a browser.

4.1 Cache Eviction Strategies
As noted by both Kim et al. [8] and Seaborn and Dullien [12], the

Rowhammer attack would be made more versatile and harder to de-

fend against if the clflush instruction was not necessary. Gruss et

al. develop a solution to this. They present a formal model for study-

ing memory access patterns that induce cache evictions. They then

take an experimental approach to determine the best parameters in

their model for memory accesses that maximize cache evictions.

By trying many different memory access patterns, they determine

which ones induce the most cache evictions on each machine they

study. They call this the offline phase.

During their online phase, while trying to exploit a machine

which they may not know details about, they suggest trying the

best strategies found in the offline phase. If the target machine

matches a previously seen machine, we will find a good strategy

with a high eviction rate; if not, we may find an acceptable strategy,

or use a “Fall-back Attack" provided by Gruss et al.

These memory access patterns then allow many cache evictions

to be forced with little knowledge of the target machine, and with

very little privilege.

4.2 JavaScript Implementation
Using their new cache eviction strategy, Gruss et al. implement

Rowhammer in JavaScript. Seaborn and Dullien speculated that a

JavaScript implementation would have to use large typed arrays to

fill memory, and this is the approach taken here. Since JavaScript

does not provide access to low-level memory, Gruss et al. used pre-

vious work in timing attacks to determine the addresses to hammer.

They describe how to implement an exploit using their implementa-

tion, which is very similar to the page table-based attack by Seaborn

and Dullien.

Their implementation of Rowhammer does produce bit flips in

practice, although fewer than before, as clflush will cause more

row activations than tailored memory access patterns. Furthermore,

being able to exploit Rowhammer in a browser makes the vulnerabil-

ity exploitable remotely, which makes it significantly more severe.

5 ROWHAMMER WITH NON-TEMPORAL
INSTRUCTIONS

In “A New Approach for Rowhammer Attacks" [11], Qiao and

Seaborn present another way to avoid the use of clclush, by us-

ing non-temporal instructions. Briefly, non-temporal instructions

are those that indicate to the CPU that caching the data accessed

is unlikely to be useful (as it will only be used once, say). As an

efficiency measure, the CPU will not cache data from the access. It

is easy to see that this is a desirable property for use in Rowhammer

implementations.

Qiao and Seaborn identify non-temporal store instructions, MOVNTI
and MOVNTDQ, that can be used in Rowhammer. Since these are store

instructions, we now need write access to the addresses that we are

hammering.

A Survey of Rowhammer: Fault Injection by Exploiting Electrical Interactions in DRAM • 5

Qiao and Seaborn give an exploit in NaCl (as in the case of Seaborn

and Dullien’s attack [12]). They show how to induce data rows and

code rows to be interleaved in memory, so that we can hammer the

data rows to flip bits in the code rows. Their implementation of this

is successful, and they are able to escape the NaCl sandbox.

5.1 Bit Flips with libc Code
Given that non-temporal instructions can be used to trigger Rowham-

mer, Qiao and Seaborn explore the possibility of triggering Rowham-

mer using benign code that already exists on the target system. In

particular, they found that the ubiquitous memcpy and memset func-

tions both use non-temporal instructions when invoked with certain

parameters. However, they were unable to get the row activation

rate high enough to observe bit flips when repeatedly calling memset.
They caution, however, that improvements could make this a valid

approach, yielding a devastating range of attack opportunities wher-

ever memcpy or memset are used.

6 ANOTHER FLIP IN THE WALL: BYPASSING ALL
KNOWN DEFENSES

A recent, well-written paper by Gruss et al., titled “Another Flip

in the Wall of Rowhammer Defenses" [5], contributes several new

techniques, systematically classifies existing defenses, and demon-

strates that their new attacks evade all existing defenses, even in

combination. This paper is the most recent paper in the core de-

velopments of Rowhammer attacks. While there have been more

papers published, they tackle more specific threat models. Thus this

paper can be considered the state-of-the-art of Rowhammer attacks.

6.1 Classifying Defenses
Gruss et al. divide existing Rowhammer defenses into the following

five categories:

(D1) Detection through static analysis (similar to NaCl disallowing

clflush as it can be used for Rowhammer)

(D2) Detection through performance counter analysis (e.g. count-

ing cache misses)

(D3) Detection through analysis of memory access patterns (which

would detect the earlier attack of Gruss et al. [6]).

(D4) Prevention by strictly avoiding physical proximity (would

prevent exploitable bit flips).

(D5) Prevention by preventing conspicuous memory footprints

(preventing the page table-based attack of Seaborn and Dul-

lien [12] and related attacks)

Note that not every type of defense mentioned so far is included

in one of these categories. In particular, many suggested hardware-

based defenses are not included. Gruss et al. specifically did not

include defenses that would be difficult to retroactively add to mem-

ory modules that are currently vulnerable, which precludes many

hardware-based defenses.

To implement a Rowhammer attack that defeats these counter-

measures, Gruss et al. develop several new techniques.

6.2 Abusing Intel SGX
To defeat both defense classes D1 and D2, Gruss et al. run their attack

inside an SGX enclave. The code in the enclave is only decrypted at

runtime, and hence cannot be inspected statically. Also, such code

is not monitored by the CPU for performance purposes.

6.3 One-Location Hammering
To defeat defense class D3, Gruss et al. use “one-location hammer-

ing". Previous hammering methods required addresses correspond-

ing to two different rows in the same bank of memory. If only a

single row was used, then the memory controller would simply

keep the row buffered, avoiding many activations. Recent changes

in memory controller policies will sometimes cause rows to preemp-

tively close early, eliminating the necessity of using two locations.

Gruss et al. show that accessing one memory location repeatedly

is enough to trigger bit flips. Since defenses in category D3 were

based on the assumption of Rowhammer accessing two addresses,

they do not work against this attack.

6.4 Opcode Flipping
To defeat defense class D4, Gruss et al. introduce opcode flipping.

Previous works used attacks based on page tables, which can be

defeated by keeping kernel pages and user-accessible pages separate.

In contrast, flips in opcodes are not avoided by this, since they are

bit flips in user pages. If an attacking process is able to cause a bit

flip in the sudo binary, for example, it could provide root privileges

to the attacking process, by breaking the password-verification logic

of sudo.

6.5 Memory Waylaying
To defeat defense class D5, Gruss et al. use memory waylaying

instead of filling memory with e.g. page tables as in previous at-

tacks. Memory waylaying uses only page cache pages, which are

considered as available memory, and hence not visible in the sys-

tem memory utilization. When loading page cache pages, they are

loaded to random physical addresses in DRAM. By loading and

evicting a page cache page continuously, and using a side-channel

technique to detect when it is placed on a specific physical address,

it is possible to load the page cache page at a desired location. An

attacker can then use an opcode flip as above to gain root privileges.

7 DEFENSES
I have discusses many proposed defenses against Rowhammer and

how various Rowhammer implementations avoid these defenses. In

this section we will recap the research in this direction.

Gruss et al. [5] provided a very good categorization of Rowham-

mer defenses. Their classification, together with the hardware-based

defenses that were suggested early on by Kim et al. [8], encompass

all known defenses against Rowhammer. Some specific, more de-

veloped implementations of these defenses include ANVIL [2], a

performance counter-based defense, ARMOR [4], a hardware-based

cache to store frequently accessed rows, and MASCAT [7], a static

code analysis tool.

As Gruss et al. showed, all of the defenses they categorized, even

when used together, are inadequate. Among hardware-based de-

fenses, there are a few options. PARA, as introduced by Kim et al. [8],

and Target Row Refresh (TRR) (detailed as a recommended feature

in the LPDDR4 standard [1]), are two options that appear to be the

6 • Philip Hodges

most effective defenses. This is expected, as they simply put limits

on how many row activations can happen before the neighbours

of a row will be refreshed. A remaining concern is what overhead

these methods would incur, but Kim et al. showed that PARA is very

effective with very low overhead.

The existence of effective hardware-based prevention mecha-

nisms is not sufficient. Modules that do not already implement these

solutions will always be vulnerable, and hence software-based solu-

tions are strongly desired. DDR3 modules do not have hardware-

based countermeasures, and while some countermeasures were

included in the DDR4 specification, they are only recommended,

and not required. Thus vast numbers of machines will be weak to

Rowhammer attacks for many years if an effective software-based

solution is not found.

7.1 ECC Memory
Memory based on error-correcting codes, or ECC memory, is an-

other hardware-based defense that many have suggested may pre-

vent Rowhammer bit flips. However, many researchers [3, 5, 6, 8,

11, 14] have pointed out that current ECC DRAM modules would

not defend against all Rowhammer attacks, as they would not be

able to correct multi-bit flips.

Cojocar et al. in particular do an in-depth study of Rowhammer

attacks in the presence of ECC memory [3]. They first use tech-

niques to reverse engineer ECC implementations in commodity

systems, and then make improvements to existing Rowhammer at-

tacks to demonstrate that ECC memory can still be vulnerable to

Rowhammer in practice.

8 OTHER ROWHAMMER APPLICATIONS
In this section we briefly mention a few other situations where

researchers have managed to implement effective Rowhammer at-

tacks, which further illustrate the severity of the vulnerability. These

works all include improvements to various parts of the Rowhammer

attacks, and so are interesting case studies in their own right.

8.1 Mobile Devices
There are two papers that address Rowhammer attacks on mobile

devices [14, 15], answering the pondering of earlier researchers

[6, 8] on whether the ARM architecture would be vulnerable in the

same way as x86-64.

The first, coinedDrammer [14], developed a deterministic Rowham-

mer attack, relying on predictable memory reuse patterns. This leads

them to an android root exploit that uses no software vulnerabilities

or user permissions.

The second paper [15] provided more attacks on the latest An-

droid OS of the time, and then suggested a countermeasure called

GuardION, that is able to prevent the type of exploit used in their

attacks and in Drammer. It is entirely possible that other exploit

methods on Android are found.

8.2 Rowhammer in Networks
There are two papers that address Rowhammer over a network [10,

13]; that is, in a situation where the attacker simply sends packets

to the target without controlling any code on the target system.

The research in these two papers was conducted concurrently and

independently.

The first, coined Throwhammer [13], describes a method for

sending packets through a network with high enough throughput

to trigger the Rowhammer effect. The authors then show how to

exploit the resulting bit flips.

The second, coined Nethammer [10], contains very similar con-

tributions. They show how to use Nethammer to exploit systems

that use uncached memory or flush instructions when dealing with

network requests. Notably, their experiments show that TRR on the

target DRAM does not always eliminate all bit flips. This throws

some doubt into the assumption that Rowhammer bit flips occur

in rows that are physically adjacent to the hammered row, as was

assumed by Kim et al. [8].

8.3 Rowhammer in the Cloud
Rowhammer has also been shown to be practical in cross-VM situa-

tions [17]. Specifically, new techniques have allowed the breaking of

Xen paravirtualized memory isolation, leading to exploits in public

clouds where this technology is used.

9 CONCLUSION
Rowhammer has exposed the most significant hardware-based se-

curity vulnerability in recent memory. I have shown the evolution

of the Rowhammer bug from inception to current research. The

research literature has covered from the details of Rowhammer be-

haviour in hardware to the various different kinds of high-level

exploits that can be executed using Rowhammer-induced bit flips.

The research is still very much in motion, with many research

suggestions in published papers not yet attempted. Improvements

to Rowhammer techniques will continue to make Rowhammer a

more and more severe attack.

As of now, Rowhammer attacks are very much ahead of the

defenses. Many of the most recent papers demonstrate attacks that

work even in the presence of all known software-based defenses

combined. Hardware-based defenses are effective, but cannot be

retrofitted to the vast amount of vulnerable memory already in

commodity systems.

Finding awidely effective software-based solution to detect and/or

prevent Rowhammer is the most important open problem in the

area. If this is not possible, then defenses specifically tailored to

deter the various kinds of Rowhammer exploits should be studied.

In any case, new Rowhammer-based attacks should continue to

be studied, so that researchers can help find new ways to prevent

the emerging threats, before these attacks are able to be used for

malicious purposes.

REFERENCES
[1] Association, J. S. S. T. Low power double data rate 4. http://www.jedec.org/

standards-documents/docs/jesd209-4b, 2017.

[2] Aweke, Z. B., Yitbarek, S. F., Qiao, R., Das, R., Hicks, M., Oren, Y., and Austin,

T. Anvil: Software-based protection against next-generation rowhammer attacks.

SIGOPS Oper. Syst. Rev. 50, 2 (Mar. 2016), 743–755.

[3] Cojocar, L., Razavi, K., Giuffrida, C., and Bos, H. Exploiting correcting codes:

On the effectiveness of ecc memory against rowhammer attacks. pp. 55–71.

[4] Ghasempour, M., Lujan, M., and Garside, J. Armor: A run-timememory hot-row

detector. http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/, 2015.

http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/

A Survey of Rowhammer: Fault Injection by Exploiting Electrical Interactions in DRAM • 7

[5] Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Juffinger, J., O’Connell, S.,

Schoechl, W., and Yarom, Y. Another flip in the wall of rowhammer defenses.

In 2018 IEEE Symposium on Security and Privacy (SP) (May 2018), pp. 245–261.

[6] Gruss, D., Maurice, C., and Mangard, S. Rowhammer.js: A remote software-

induced fault attack in javascript. In Proceedings of the 13th International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment - Volume
9721 (Berlin, Heidelberg, 2016), DIMVA 2016, Springer-Verlag, pp. 300–321.

[7] Irazoqi, G., Eisenbarth, T., and Sunar, B. Mascat: Preventing microarchitec-

tural attacks before distribution. In Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy (New York, NY, USA, 2018), CODASPY

’18, ACM, pp. 377–388.

[8] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., Wilkerson, C., Lai, K., and

Mutlu, O. Flipping bits in memory without accessing them: An experimental

study of dram disturbance errors. SIGARCH Comput. Archit. News 42, 3 (June

2014), 361–372.

[9] Lenovo. Row hammer privilege escalation. https://support.lenovo.com/us/en/

product_security/row_hammer, July 2016.

[10] Lipp, M., Aga, M. T., Schwarz, M., Gruss, D., Maurice, C., Raab, L., and Lamster,

L. Nethammer: Inducing rowhammer faults through network requests, 2018.

[11] Qiao, R., and Seaborn, M. A new approach for rowhammer attacks. In 2016
IEEE International Symposium on Hardware Oriented Security and Trust (HOST)
(May 2016), pp. 161–166.

[12] Seaborn, M., and Dullien, T. Exploiting the dram rowhammer bug to gain

kernel privileges. https://googleprojectzero.blogspot.com/2015/03/exploiting-

dram-rowhammer-bug-to-gain.html, Mar 2015.

[13] Tatar, A., Konoth, R. K., Athanasopoulos, E., Giuffrida, C., Bos, H., and

Razavi, K. Throwhammer: Rowhammer attacks over the network and defenses.

In 2018 USENIX Annual Technical Conference (USENIX ATC 18) (Boston, MA, July

2018), USENIX Association, pp. 213–226.

[14] van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C.,

Vigna, G., Bos, H., Razavi, K., and Giuffrida, C. Drammer: Deterministic

rowhammer attacks on mobile platforms. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (New York, NY, USA, 2016),

CCS ’16, ACM, pp. 1675–1689.

[15] van der Veen, V., Lindorfer, M., Fratantonio, Y., Padmanabha Pillai, H.,

Vigna, G., Kruegel, C., Bos, H., and Razavi, K. Guardion: Practical mitigation

of dma-based rowhammer attacks on arm. In Detection of Intrusions and Malware,
and Vulnerability Assessment (Cham, 2018), C. Giuffrida, S. Bardin, and G. Blanc,

Eds., Springer International Publishing, pp. 92–113.

[16] Wu, X.-C., Sherwood, T., Chong, F. T., and Li, Y. Protecting page tables from

rowhammer attacks using monotonic pointers in dram true-cells. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (New York, NY, USA, 2019), ASPLOS

’19, ACM, pp. 645–657.

[17] Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. One bit flips, one cloud flops:

Cross-vm row hammer attacks and privilege escalation. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX, Aug. 2016), USENIX Association,

pp. 19–35.

https://support.lenovo.com/us/en/product_security/row_hammer
https://support.lenovo.com/us/en/product_security/row_hammer
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

	Abstract
	1 Introduction
	1.1 Survey Methodology
	1.2 Overview of Survey

	2 Rowhammer: The First Iteration
	2.1 How DRAM Works
	2.2 Code for Rowhammering
	2.3 Rowhammer Characterizations
	2.4 Solutions

	3 Project Zero: A First Exploit
	3.1 Address Selection
	3.2 Exploiting Bit Flips
	3.3 Alternatives to clflush
	3.4 New Proposed Mitigation

	4 Rowhammer With Regular Memory Accesses
	4.1 Cache Eviction Strategies
	4.2 JavaScript Implementation

	5 Rowhammer with Non-Temporal Instructions
	5.1 Bit Flips with libc Code

	6 Another Flip in the Wall: Bypassing All Known Defenses
	6.1 Classifying Defenses
	6.2 Abusing Intel SGX
	6.3 One-Location Hammering
	6.4 Opcode Flipping
	6.5 Memory Waylaying

	7 Defenses
	7.1 ECC Memory

	8 Other Rowhammer Applications
	8.1 Mobile Devices
	8.2 Rowhammer in Networks
	8.3 Rowhammer in the Cloud

	9 Conclusion
	References

